(3x^2)+10x=216

Simple and best practice solution for (3x^2)+10x=216 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x^2)+10x=216 equation:



(3x^2)+10x=216
We move all terms to the left:
(3x^2)+10x-(216)=0
a = 3; b = 10; c = -216;
Δ = b2-4ac
Δ = 102-4·3·(-216)
Δ = 2692
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2692}=\sqrt{4*673}=\sqrt{4}*\sqrt{673}=2\sqrt{673}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{673}}{2*3}=\frac{-10-2\sqrt{673}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{673}}{2*3}=\frac{-10+2\sqrt{673}}{6} $

See similar equations:

| 15s–2.25=9.00+s | | 9.00s+2.25=15s | | -7u+39=3(u-7) | | x^2+12x+36=-8 | | 7(w+1)=5w+5 | | 2x-30=-2(x+7) | | 3x(x-1)^(1/2)+4(x-1)^(3/2)=0 | | 19.99+g=23.99+4g | | 6+5(x+3)=31 | | 3x(x−1)^(1/2)+4(x−1)^(3/2)=0 | | 19.99+4g=23.99+2g | | 3x+4(x-1)^3=0 | | 19.99+8.99=2g+4g | | 5f+4f–3f–12f=9 | | v÷5-4=31 | | 7u-2u=3u+32 | | 19.99+2g=23.99+4g | | 8(6+7r)+8(1-2r)=56 | | -38=3y+4(y+8) | | -10=-2/3x-2 | | -38=3y-14(y+8) | | 9x+25=1x-19 | | 6x-x-(x-5)=46 | | (2x-7)-4x+8=4(x+6 | | 9x-100=-28 | | -10=2(w+5)-4w | | 4x-(3+2x)=19 | | -28=8(v-2)-2v | | 3n^2-n=120 | | 3n^2-n-120=0 | | 238.7+1.8k=3.02•10^5 | | -2(1-5x)-5(-4x—6)=4x+6x |

Equations solver categories